11,376 research outputs found

    Neural complexity: a graph theoretic interpretation

    No full text
    One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to coherently integrate information across distinct functional modules in the absence of a central executive. To this end Tononi et al. [Proc. Nat. Acad. Sci. USA 91, 5033 (1994)] proposed a measure of neural complexity that purports to capture this property based on mutual information between complementary subsets of a system. Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the balance between the segregation and integration of a system's dynamics. One key question arising for such measures involves understanding how they are influenced by network topology. Sporns et al. [Cereb. Cortex 10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the topological features of a network. However, a complete picture has yet to be established. While De Lucia et al. [Phys. Rev. E 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In this paper we start by describing weighted connection matrices formed by applying a random continuous weight distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in terms of the moments of the weight distribution and elementary graph motifs. In particular we explicitly establish a dependency of neural complexity on cyclic graph motifs

    The Role of Expectations and Gender in Altruism

    Get PDF
    A central question in the study of altruism has been whether there is a systematic gender difference in giving behavior. Most experimental economics research has found that women are more generous than men. Evidence also suggests that gender differences depend upon the price of giving: males are more altruistic when the price of giving is low, while females are more altruistic when the price of giving is high. However, in the modified dictator game, a key variable in one’s decision to give is what one expects to receive. Systematic differences in those expectations may well contribute to systematic differences in altruistic behavior. We show that these expectations drive an important and widely reported result. When these expectations are homegrown, we replicate the finding. When expectations of receiving are uniform rather than homegrown, gender differences in price sensitivity disappear: males and females give equal amounts. This suggests that it is gender differences in expectations about others’ giving — not differences in tastes for fairness — that explains the previous results.altruism, charitable giving, dictator game, gender differences, experiment

    Learning action-oriented models through active inference

    Get PDF
    Converging theories suggest that organisms learn and exploit probabilistic models of their environment. However, it remains unclear how such models can be learned in practice. The open-ended complexity of natural environments means that it is generally infeasible for organisms to model their environment comprehensively. Alternatively, action-oriented models attempt to encode a parsimonious representation of adaptive agent-environment interactions. One approach to learning action-oriented models is to learn online in the presence of goal-directed behaviours. This constrains an agent to behaviourally relevant trajectories, reducing the diversity of the data a model need account for. Unfortunately, this approach can cause models to prematurely converge to sub-optimal solutions, through a process we refer to as a bad-bootstrap. Here, we exploit the normative framework of active inference to show that efficient action-oriented models can be learned by balancing goal-oriented and epistemic (information-seeking) behaviours in a principled manner. We illustrate our approach using a simple agent-based model of bacterial chemotaxis. We first demonstrate that learning via goal-directed behaviour indeed constrains models to behaviorally relevant aspects of the environment, but that this approach is prone to sub-optimal convergence. We then demonstrate that epistemic behaviours facilitate the construction of accurate and comprehensive models, but that these models are not tailored to any specific behavioural niche and are therefore less efficient in their use of data. Finally, we show that active inference agents learn models that are parsimonious, tailored to action, and which avoid bad bootstraps and sub-optimal convergence. Critically, our results indicate that models learned through active inference can support adaptive behaviour in spite of, and indeed because of, their departure from veridical representations of the environment. Our approach provides a principled method for learning adaptive models from limited interactions with an environment, highlighting a route to sample efficient learning algorithms

    Quantum cryptographic ranging

    Get PDF
    We present a system to measure the distance between two parties that allows only trusted people to access the result. The security of the protocol is guaranteed by the complementarity principle in quantum mechanics. The protocol can be realized with available technology, at least as a proof of principle experiment.Comment: 2 pages, 1 figure. Contribution to the proceedings of the IV edition of the Garda Lake Workshop "Mysteries, Puzzles and Paradoxes in Quantum Mechanics

    Security of two-way quantum cryptography against asymmetric Gaussian attacks

    Full text link
    Recently, we have shown the advantages of two-way quantum communications in continuous variable quantum cryptography. Thanks to this new approach, two honest users can achieve a non-trivial security enhancement as long as the Gaussian interactions of an eavesdropper are independent and identical. In this work, we consider asymmetric strategies where the Gaussian interactions can be different and classically correlated. For several attacks of this kind, we prove that the enhancement of security still holds when the two-way protocols are used in direct reconciliation.Comment: Proceeding of the SPIE Conference "Quantum Communications and Quantum Imaging VI" - San Diego 2008. This paper is connected with arXiv:quant-ph/0611167 (for the last version see: Nature Physics 4, 726 (2008)
    • …
    corecore